Roll No. \square
Total No. of Questions : 09

B.Tech. (2011 Onwards) (Sem.-2)

ENGINEERING MATHEMATICS - II
Subject Code : BTAM-102
Paper ID: [A1111]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION A

1. Write briefly :
a) Define Linear independent and dependent vectors.
b) Find the characteristic equation of the matrix $\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right)$.
c) Test whether the matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right)$ is diagonalisable or not?
d) Express $\sin ^{5} \theta$ in terms of the sines of multiples of θ.
e) Find the general and principle value of i^{i}.
f) Examine the convergence / divergence of the series $\sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n^{2}}}$.
g) Define the term absolute convergence and use this concept to test the convergence of the series $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$.
h) Find the degree and order of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=\frac{d^{2} y}{d x^{2}}$
i) For what value of k the equation $x y^{3} d x+k\left(x^{2} y^{2}\right) d y=0$ is a exact equation.
j) Find the complete solution of the equation :

$$
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=0, \text { given } x(0)=0, \frac{d x}{d t}(\text { at } t=0)=15
$$

SECTION-B

2. a) Use method of variation of parameters to find the general solution of the differential equation $y^{\prime \prime}+y=\operatorname{cosec} x$.
b) Find the complete solution of the differential $y^{\prime \prime}-2 y^{\prime}+y=x \sin x$.
3. a) Solve the following simultaneous differential equation

$$
\frac{d x}{d t}+y+5 x=e^{t}, \frac{d y}{d t}+x+5 y=e^{5 t}
$$

b) Find the complete solution of the differential equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=x \log x$ by using operator method.
4. a) Solve the differential equation : $\frac{d y}{d x}=\frac{y+1}{(y+2) e^{x}-x}$.
b) Find the particular solution of the differential equation $y^{\prime \prime}-2 y^{\prime}+2 y=e^{x} \tan x$
5. An electric circuit consists of an inductance 0.1 henry, a resistance of 20 ohms, and a condenser of capacitance 25 microfarads. Find the charge q and the current i at time t, given the initial conditions $q=0.05$ coulombs, $i=0$ when $t=0$.

SECTION-C

6. a) Use the rank method to test the consistency of the system of equations
$x+2 y+z=2 ; 3 x+y-2 z=1 ; 4 x-3 y-z=3 ; 2 x+4 y+2 z=4$, if consistent, then solve it completely.
b) Use Gauss-Jordan method to find the inverse of the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 5
\end{array}\right)
$$

7. a) Verify Cayley-Hamilton theorem for the matrix

$$
\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

and hence find its inverse.
b) Prove that eigen values of Hermetian matrix are real.
8. a) Test the convergence of the series

$$
\frac{x}{1.2}+\frac{x^{2}}{3.4}+\frac{x^{3}}{5.6}+\ldots \ldots \ldots . . \infty(x>0)
$$

b) Test for what values of x does the series convergence/diverge?

$$
\sum_{n=1}^{\infty} \frac{(n+1)^{n}}{n^{n+1}} x^{n}
$$

9. a) Use Demoivre's theorem to prove that

$$
\left(\frac{1+\sin \alpha+i \cos \alpha}{1+\sin \alpha-i \cos \alpha}\right)^{n}=\cos \left(\frac{n \pi}{2}-n \alpha\right)+i \sin \left(\frac{n \pi}{2}-n \alpha\right)
$$

b) Separate $\tan ^{-1}\left(\mathrm{e}^{i \theta}\right)$ into real and imaginary parts.

