Roll No. \square Total No. of Pages : 03
Total No. of Questions: 09

B.Tech. (2011 Onwards) (Sem.-1)

ENGINEERING MATHEMATICS - I
Subject Code : BTAM-101
Paper ID : [A1101]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.
5. Symbols used have their usual meanings. Statistical tables, if demanded, may be provided.

SECTION-A

1. Solve the following :
a) If $u=f\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$, then show that $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=0$.
b) Find the stationary points of the function $f(x, y)=x^{3}+y^{3}-63(x+y)+12 x y$.
c) If $u=x^{2}-y^{2}$ and $v=2 x y$ and $x=r \cos \theta, y=r \sin \theta$, then find the value of $\frac{\partial(u, v)}{\partial(r, \theta)}$.
d) For what values of a, b, and c the vector function
$\vec{F}=(x+y+a z) \vec{i}+(b x+3 y-z) \vec{j}+(3 x+c y+z) \vec{k}$ is irrotational.
e) Calculate the circulation of the field $\vec{F}=(x-y) \hat{i}+x \hat{j}$ around the circle $x^{2}+y^{2}=1$.
f) Find the length of one arc of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.
g) Evaluate $\int_{0}^{2 \sqrt{\ln 3}} \int_{y / 2}^{\sqrt{\ln 3}} e^{x^{2}} d x d y$.
h) State Stoke's theorem.
i) Evaluate $\int_{C} x y d x+(x+y) d y$, along the curve $\mathrm{C}: y=x^{2}$ from $(-1,1)$ to $(2,4)$.
j) Evaluate : $\int_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y+z} e^{x+y} d y d x$.

SECTION-B

2. a) Find the radius of curvature at any point of the curve $r=a(1-\cos \theta)$ and prove that ρ^{2} / r is constant.
b) Trace the curve $y^{2}\left(x^{2}+y^{2}\right)+a^{2}\left(x^{2}-y^{2}\right)=0$ by giving all its features in detail.
3. a) Find the volume of the solid formed by revolving the curve $y^{2}(2 a-x)=x^{3}$ about its asymptote.
b) Find the centre of gravity of the arc of the curve $x=a(t+\sin t), y=a(1-\cos t)$ in the first quadrant.
4. a) If $u=f(r)$, where $r^{2}=x^{2}+y^{2}$, then show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)$
b) Use Lagrange's method of undetermined coefficients to show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
5. a) Find the first three terms of the Taylor's series expansion of $e^{x} \log (1+y)$ in the neighbourhood of $(0,0)$
b) Use Euler's theorem to prove that

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{\sin u \cos 2 u}{4 \cos ^{3} u}, \text { whenever } u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)
$$

SECTION-C

6. a) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$ by changing into polar coordinates.
b) Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$.
7. a) Prove the identity :
$\nabla\left[\frac{\vec{a} \cdot \vec{r}}{r^{n}}\right]=\frac{\vec{a}}{r^{n}}-\frac{n(\vec{a} \cdot \vec{r}) \vec{r}}{r^{n+2}}$, where \vec{a} is a constant vector.
b) A vector field is given by $\vec{F}=18 z \hat{i}-12 \hat{j}+3 y \hat{k}$. Evaluate the surface integral $\int_{S}^{\vec{F}} \cdot \hat{n} d s$, where S is the part of the plane $2 x+3 y+6 z=12$ in the first octant.
8. Verify the Gauss Divergence theorem for a vector field defined by $\vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-x z\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ taken around the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
9. a) Find the directional derivative of $f(x, y . z)=x y^{2}+y z^{3}$ at $(2,-1,1)$ in the direction of normal to the surface $x \log z-y^{2}=-4$ at $(-1,2,1)$.
b) State Green's theorem in plane and use it to evaluate

$$
\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y
$$

where C is the boundary of the region defined by $x=0, y=0, x+y=1$

